Syllabus for the qualifying exam on statistical mechanics

(not the syllabus for PHYS 219)

- Thermodynamics
 - o The zeroth, first, and second law
 - Carnot engines
 - Entropy
 - Equilibrium and thermodynamic potentials
 - o Stability conditions
 - o The third law
- Probability
 - Random variables
 - o Probability distributions
 - Many random variables
 - o Sums of random variables and the central limit theorem
 - Rules for large numbers
 - Information, Entropy, and Estimation
- Kinetic theory of gases
 - Liouville's theorem
 - The Boltzmann equation
- Classical statistical mechanics
 - The microcanonical ensemble
 - Finite-level systems (2, 3- state systems)
 - o The ideal gas
 - $_{\circ}$ $\,$ Mixing entropy and the Gibbs paradox $\,$
 - The canonical ensemble
 - The Gibbs canonical ensemble
 - The grand canonical ensemble
 - Fluctuations in ensembles and relation to susceptibilities
- Quantum statistical mechanics
 - Fermi and Bose Distributions
 - o Black-body radiation
 - o Hilbert space of identical particles

- Canonical formulation
- Grand canonical formulation
- o Degenerate Fermi gas, Sommerfeld expansion
- o Degenerate Bose gas, Bose condensation and Superfluid He₄
- Interacting particles
 - The cumulant expansion
 - The cluster expansion
 - Second virial coefficient and van der Waals equation
 - o Breakdown of the van der Waals equation
 - Mean-field theory, Phase transitions (1st and 2nd order), critical behaviour, Exponents
- Statistical fields
 - \circ The Landau theory of 2nd order phase transitions
 - Saddle point approximation and mean-field theory
 - Discrete symmetry breaking and domain walls, energy entropy arguments of Landau Lifshitz and Peierls domain wall entropy
 - Exact solution of 1-d Ising model, transfer-matrix formulation
- Fluctuations
 - o Scattering and fluctuations
 - Correlation functions and susceptibilities
 - o Fluctuation corrections to the saddle point